Poultry and PIg Low-input and Organic production systems' Welfare

WP6.3 Improving the gastro-intestinal health and welfare of laying hens by the use of dietary plant additives

Ricarda M. Engberg, Rikke B. Kjærup, Tina S. Dalgaard, Aarhus University Denmark

PPILOW Final conference – Africa Museum, Tervuren (Brussels)

11th-12th June 2024

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 816172

Background

- Worm infections play a significant role in hens with access to outdoor areas, i.e. organic production
- Ascaridia galli is one of the most abundant nematodes in poultry
- Severe infections with the parasite impair hen welfare and production results
- Use of anthelmintics in organic production is restricted due to constrains regarding marketing of eggs
- Alternative to anthelmintics are needed in worm control

Objective

 To identify plant-based feed interventions that support hen robustness against parasitic and bacterial diseases

- Ideal properties
 - Antiparasitic effect
 - Antibacterial effect
 - Immune stimulation

PPILOW – WP6.3 Research activities with laying hens

In vivo experiments

- 3 experiments applying an Ascaridia galli challenge model ٠
- 1 experiment with naturally infected hens from organic egg producer ٠
- 1 on-farm experiment ٠

In vitro experiments with ethanolic plant extracts

(kindly provided by Marina Spinu and Vasile Cozma, USAMV, Romania)

- Marigold Calendula officinalis ٠
- Garlic Allium sativum ٠
- Pumpkin seed Cucurbita pepo ٠
- Coriander seed Coriandrum sativum ٠
- Wormwood Artemesia absinthium ٠
- Summer savory ٠
- Satureja hortensis L.

PPILOW – WP6.3 Infection model *Ascaridia galli* challenge

6

A WERE AND A CARDEN ALLAND A LAND AND A CARDEN AND A

5

- Arrival of hens (age: 18-20 weeks)
- Deworming of hens with Flubendazol (Flubenol vet.) or Fenbendazol (Panacur vet.)
 - Effect on *Capillaria spp*. found to be insufficient
- Oral infection with 500-1000 infective A. galli eggs

4

Weeks:

-2

-1

Outcome variables

• Performance:

Egg production, weight gain, feed intake

• Gut health:

Faecal dry matter, faecal pH, quantity of selected bacteria, organic fatty acids in ileal and caecal digesta, plasma colouration (gut integrity)

- Parasitology: Worm eggs/g faeces (EPG), worm burden, A. galli specific IgY in serum
- Immunocompetence:

Differential leucocyte counts, mitogen response of lymphocytes, phenotype of intraepithelial lymphocytes, Ig production potential in gut mucosa

the state of the s

Outcome variables

In the presence of ethanolic plant extract

- Larvae mortality after hatching
- Adult worm mortality
- Immune stimulation
 - Mitochondrial activity of macrophages (HD11 cell line), nitrogen oxide production
 - Lymphocytes isolated from hen blood
 - Proliferation, activation marker expression, mitochondrial activity, and mortality

In vitro experiments

-Effects of plant extracts

	Anthelmintic		Immune stimulating	
	Larvae mortality	Adult worm mortality	Macrophage activation	Lymphocyte activation
Pumpkin, Cucurbita pepo	<u>.</u>	<u>.</u>	<u>.</u>	
Summer savory Satureja hortensis L.	<u>.</u>	<u>.</u>	<u>.</u>	NS
Garlic Allium sativum	$\overline{}$	\bigcirc	NS	<u>.</u>
Wormwood Artemesia absinthium	<u>.</u>	<u>.</u>	<u>.</u>	NS
Coriander Coriandrum sativum	<u>.</u>		<u></u>	<u></u>
Marigold Calendula officinalis	<u>.</u>	<u>.</u>	NA	NA

The share and th

Fermented feed additive

-EP199 (FEXP), a fermented product based on rapeseed meal and seaweed (Fermentation experts)

96 hens/dietary treatment, 16 pens/dietary treatment, 6 hens/pen (192 hens in total)

Feed	Group name
Control	А
EP199, 6%	В

Effect of feed supplement EP199

- .

No effect on performance Gut health: Caecal concentration of short chain fatty acids (acetic acid, propionic acid and butyric acid) was higher when hens were supplemented with EP199

- Parasitology: • No effect on EPG or worm burden Concentrations of serum A. galli specific IgY were lower in hens supplemented with EP199
- No effect on immunocompetence

PPILOW – W6.3 In vivo experiments #2 & 3

Dietary plant additives

24 hens/dietary treatment, 4 pens/dietary treatment,6 hens/pen (96 hens in total)

Plant additive	Concentration in feed	Experiment #
None (Control)	-	2+3
Garlic	1%	2
Chokeberry	1%	2
Garlic/Chokeberry	0.5% /0.5%	2
Garlic	2%	3
Pumpkin seeds	2%	3
Coriander seeds	2%	3

Allium sativum

Aronia melanocarpa

Cucurbita pepo

Coriandrum sativum

10

Effect of dietary plant additives

- No effect on performance
- Gut health: Effect on ileal and caecal contents of organic acids and on the quantity of selected bacteria
- Parasitology: No effect on *A. galli* EPG, worm burden, or serum *A. galli* specific IgY, EGP for *Capillaria spp*. was lower when hens were supplemented with pumpkin seeds week 7 p.i.
- No effect on immunocompetence

the second and the second will be a second a second a second and the second and the second as the se

Capillaria spp.

PPILOW – W6.3 In vivo experiments #2 & 3

PPILOW

The second the NOVER AND A STATE AND A STA

Gut health

Experiment #2 (1% plant supplement)

PPILOW

Short chain fatty acids (SCFA) Caeca

the the the the second the share and the the the the the the

On-farm: Propionic acid treated grain (0.5% propionic acid)

2 different application methods

- Continously during 9 weeks
- 2 days every 2nd week, three times
- Absense of non-supplemented control group

Disease on the farm egg drop syndrom (virus)

-> No effect of either treatment strategy

Propionic acid treated grain and pumpkin and coriander oils

48 hens pr. treatment with 6 hens pr. pen (72 hens in total) Hens were 80 weeks old obtained from an organic egg producer Hens were naturally infected with nematodes (*A. galli* and *Capillaria spp.*)

Feed		
Grain non-preserved (Control)		
Grain + pumpkin seed oil/coriander seed essential oil (50 mg/100g)		
Grain preserved with propionic acid (0.5%)		

PPILOW – W6.3 In vivo experiment #4

Effect of feed

- No effect on hen performance
- Gut health: No effect on ileal and caecal contents of organic acids and quantity of selected bacteria
- Plasma coloration values were higher when hens were fed propionic acid treated grain
- Parasitology:
 No effect on EPG, worm burden, or serum A. galli specific IgY
- Immunocompetence: The phagocytotic activity were higher in isolated heterophils when hens were fed propionic acid treated grain

Conclusion

- No firm recommendations can be given with respect to the practical control of *A. galli*
- Ethanolic plant extracts showed good *in vitro* effects, but may not be applicable due to involved costs
- Garlic applied as dried powder at concentrations of 1-2% has the most promising antiparasitic properties

- Most plant additives had beneficial effects on intestinal health
 - Increase of intestinal fermentation
 - Decrease of intestinal pH
 - Decrease of potentially harmful acid sensitive bacteria (E. coli)
 - Increase of presumptive beneficial bacteria (Lactobacillus spp.)
- Propionic acid at current concentrations does not offer health benefits
 - Reduces gut integrity

PPILOW PARTNERS

Thank you for your attention

www.ppilow.eu

18

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 816172