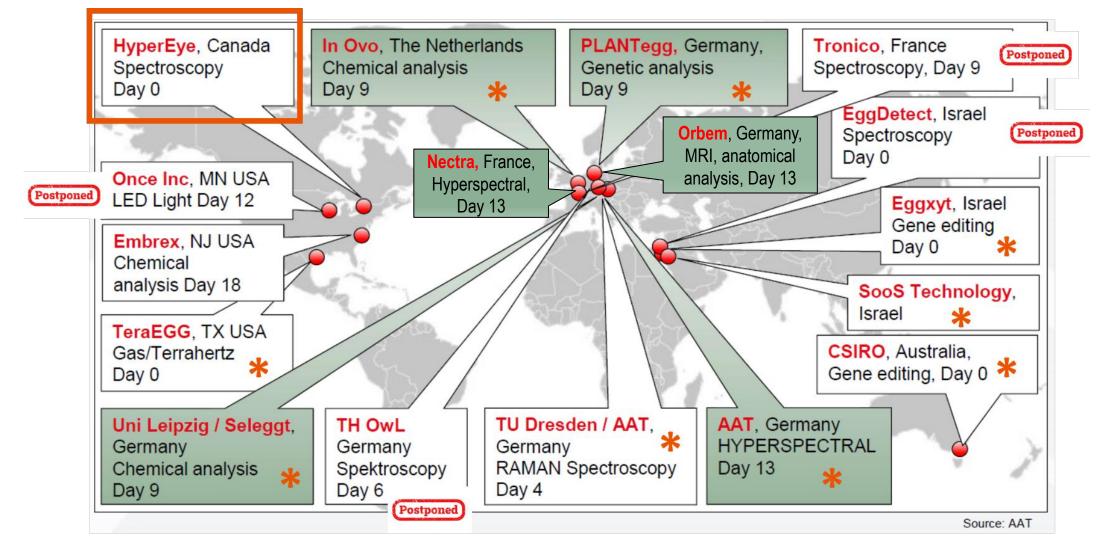
Poultry and PIg Low-input and Organic production systems' Welfare

In ovo sexing tools

Sophie Réhault-Godbert (INRAE, France)

Katia Grenier (CNRS, France)


PPILOW Final conference – Africa Museum, Tervuren (Brussels) 11th-12th June 2024

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 816172

PPILOW – Overview of the methods that have been developed in the last decades

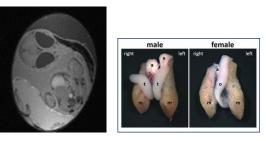
6 marketed techniques (3 semi-invasive / 3 non-invasive)

PPILOW – Semi-invasive methods with *in ovo* sampling

≈ 7 days ≈ 15 days

	Who ?	Country	Method	Strain Specificity	Incubation day	Precision	Speed
Invasive (saniatiray risk and chick mortality)	∦ PLANT egg	Germany	Dosage (chromosome)	All chicken strains	9	>95%	Low (3,000 to 6,000 eggs/hour)
	SELEGGT responsible solutions	Germany	Dosage (hormone)	All chicken strains	9	>95%	Low (3,000 to 6,000 eggs/hour)
		The Netherlands	Dosage (metabolites)	All chicken strains	9	>95%	Low (3,000 to 6,000 eggs/hour)

N Che ANNI MARKAR


Day 9 (of 21)

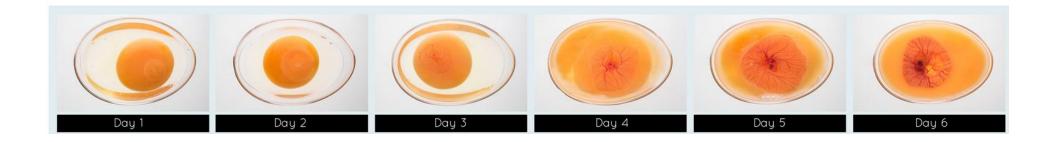
PPILOW

PPILOW – Non-invasive methods

Magnetic resonance imaging (MRI) : gonad development

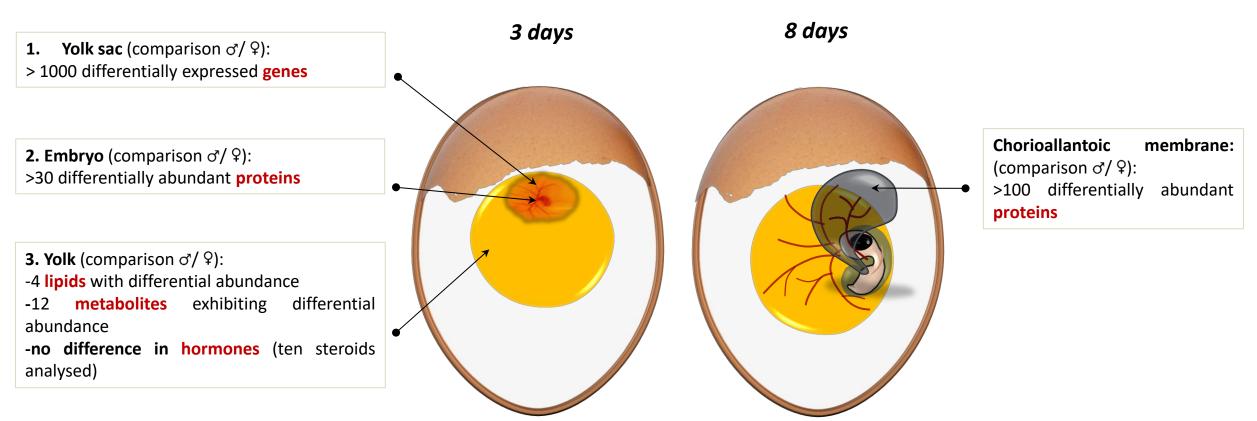
Hyperspectral imaging : chicken strains selected on the colour of feathers (brown strains)

Notes and the second second


	Society	Country	Method	Strain specificity	Incubation day	Precision	Speed
Non invasive	ORBEM	Germany	MRI	All chicken strains	13	>95%	Low (3,000 eggs/hour)
		Germany	Hyperspectral spectroscopy	Strains with feather colour sexing	13	96%	18-20,000 eggs/hour
	NE ER ER EN ER	France	Hyperspectral spectroscopy	Strains with feather colour sexing	13	>95%	20,000 eggs/hour

Day 13 (of 21)

Subtask 1: identification of early biomarkers of sex in ovo (≤ 8 days) Focus on molecular markers = detectable from the start of the incubation as a result from the activation of the genome and embryonic metabolism



Invasive step : sampling of the different structures of the egg; identification of the sex of the embryo (from embryonic or extra-embryonic structures) by PCR; analyse the molecular profile of samples, and associate the profile to the sex of the embryo

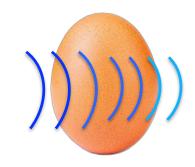
and the state of t

WP5.3 Development of new ovosexing methods : early non-invasive tools (2/5)

Incubation

The embryo and extra-embryonic membranes exhibit most of the differences between male and female « eggs » at early stages of development

Subtask 2: Development of a non-invasive ovosexing technique using radiofrequency (RF)



AM TV Remote Light Bulb FM TV Cell Phone; Radar Sun X-ray machine **Radioctive Elements** Extremely Lov Frequency Radio waves Infrared Ultraviolet Microwaves X-rays Gamma rays NON-IONIZING IONIZING **BLE SPECTRUM** VIS **Building Size**

Electromagnetic Spectrum

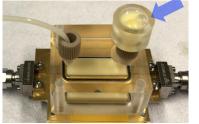
-frequency range = non-ionising, not harmful -expected to be of low cost

RF dielectric spectroscopy

- Label-free
- Non-invasive
- Quick

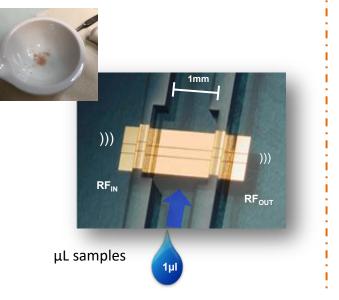
A Share and the share and the

• Global response of the structure

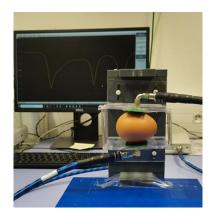

1. Which dielectric source of sex discrimination in eggs

For yolk and albumen

→ RF millifluidic sensor



mL samples


For embryo and yolk sac

→ RF microfluidic sensor

2. Chick egg RF sexing RF

- Development of a specific test setup
- Implementation of Artificial Intelligence techniques for RF data treatment

- → Tens of preliminary assays + design of the various sensors
- → 5 independent testing campaigns on hundreds of egg constituents, whole eggs, or both

WP5.3 Development of new ovo sexing methods : early non-invasive tools (5/5)

- → All tested egg constituents include the dielectric sex information (albumen, yolk and embryo with yolk sac)
- → Sexing rate increases with incubation time:
 - → Yolk :70% at 7 daysto83% at 8 and 9 days→ Albumen :50-60% at 7 daysto66-90 % at 8 and 9 daysEgg constituents→ Embryo + yolk sac :80% at 7 daysto90 % at 8 daysEgg constituents

Mather all the all the all and a set

→ Whole eggs : 70% at 6 and 7 days, 80 - 83 % at 8 days of incubation

PPILOW – Take-home messages

1

 \rightarrow Identification of thousands of early sex biomarkers

 \rightarrow The embryo and the extra-embryonic structures are the most discriminant between males and females at early stages = promising targets for the development of early ovosexing tools

2

 \rightarrow First demonstration of non-invasive ovo sexing with RF spectroscopy

 \rightarrow Dielectric sex information in all egg constituents, with a dominance in the embryo + yolk sac, then yolk and finally albumen

 \rightarrow Sexing rate up to 83% at 8 days of incubation for whole eggs

Nother Market and the total

PPILOW PARTNERS

Thank you for your attention

www.ppilow.eu

17

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 816172