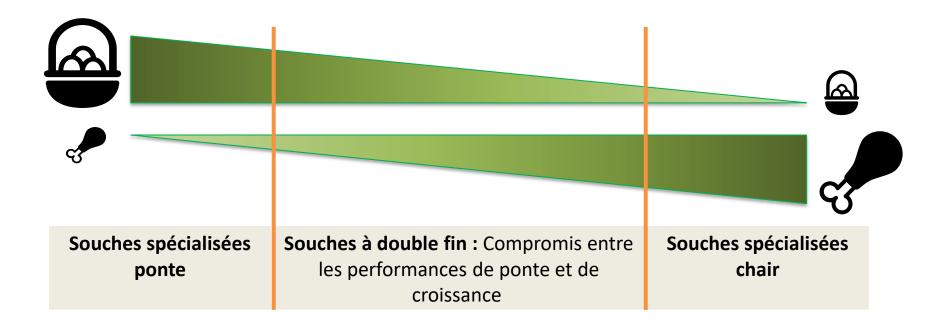


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 816172

Evaluation des performances de trois souches à double fin comme alternative à l'élimination des poussins mâles

S Lombard, **H Pluschke**, M Ferriz, M Reverchon, L Baldinger, A Roinsard, B Desaint, A Collin

PPILOW Quel devenir pour les frères de pondeuses ?


Sélection de femelles reproductrices → Performances de ponte → Antagonistes aux performances de croissance Œufs fertilisés Poussins Flimination des poussins môles d'1 jour © Photos / Wikipedia

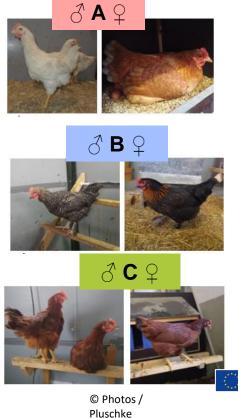
Statégies :

- **Elever les mâles issus de souches pondeuses** → lignée génétique spécialisée ponte, mâles difficiles à valoriser économiquement pour leur viande (variable selon le niveau de production visé)
- **Ovo sexage** → détermination du sexe de l'embryon dans l'oeuf, méthode déployée en France et en Allemagne
- Elevage de souches de volailles à double fin

PPILOW Souche à double fins

- Elevage des souches à double fin : femelles pour la production d'œufs & mâles pour la production de viande
 - → niveaux de production inférieurs à ceux des souches spécialisées
 - → selon les objectifs des éleveurs, ces souches à double fin peuvent être plus orientées sur la production d'œufs ou de chair

PPILOW Objectifs


Évaluer les caractéristiques de 3 souches à double fin en ce qui concerne les performances, l'alimentation, le comportement et certaines mesures de bien-être animal

3 souches génétiques différentes ont été évaluées en fermes expérimentales (production de chair et ponte) au Danemark, en Allemagne et en France sous cahier des charges AB:

Génotype A : en faveur de la production de viande

Génotype B: souche rustique (peu sélectionnée)

Génotype C: en faveur de la production d'œufs

PPILOW Comparaison des performances de ponte en Allemagne et au Danemark

Genotype A	Danemark	Allemagne
Poids semaine 18, g	2288	2378
Nombre d'oeufs sur 62 semaines	219	204
Genotype B	Danemark	Allemagne
Poids semaine 18, g	1924	1878
Nombre d'oeufs sur 62 semaines	224	225
Genotype C	Danemark	Allemagne
Poids semaine 18, g	2051	1943
Nombre d'oeufs sur 62 semaines	245	223

→ Publication en 2021

Open Access Article

Dual-Purpose Poultry in Organic Egg Production and Effects on Egg Quality Parameters

by 🚷 Marianne Hammershøj 1.* 🖾 🗓 , 🚷 Gitte Hald Kristiansen 1 🖾 and 🚷 Sanna Steenfeldt 2 🖾

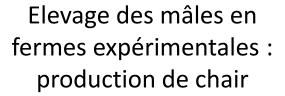
Foods 2021, 10(4), 897; https://doi.org/10.3390/foods10040897

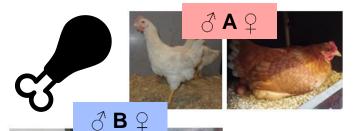
¹ Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus, Denmark

² Department of Animal Science, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark

^{*} Author to whom correspondence should be addressed.

PPILOW Comparaison des performances de croissance des mâles


Génotype A	Danemark	Allemagne	France Printemps / été	France Automne / hiver
Poids vif semaine 12, g	2019	2203	1977	1885
Indice de consommation	3,1	3,4	3,3	3,4


Génotype B	Danemark	Allemagne	France Printemps / été	France Automne / hiver
Poids vif semaine 12, g	1645	1763	1577	1466
Indice de consommation	3,3	3,5	3,4	3,7

Génotype C	Danemark	Allemagne	France Printemps / été	France Automne / hiver
Poids vif semaine 12, g	1732	1634	1393	1551
Indice de consommation	3,1	3,7	3,2	3,6

PPILOW Génotypes & décisions des groupes de professionnels

Elevage des poules en fermes expérimentales : production d'oeufs

Sur la base de ces résultats, les groupes de professionnels de la filière de chaque pays ont choisi quel génotype mettre en

place en élevage

Poultry and Plg Low-input and Organic production systems' Welfare

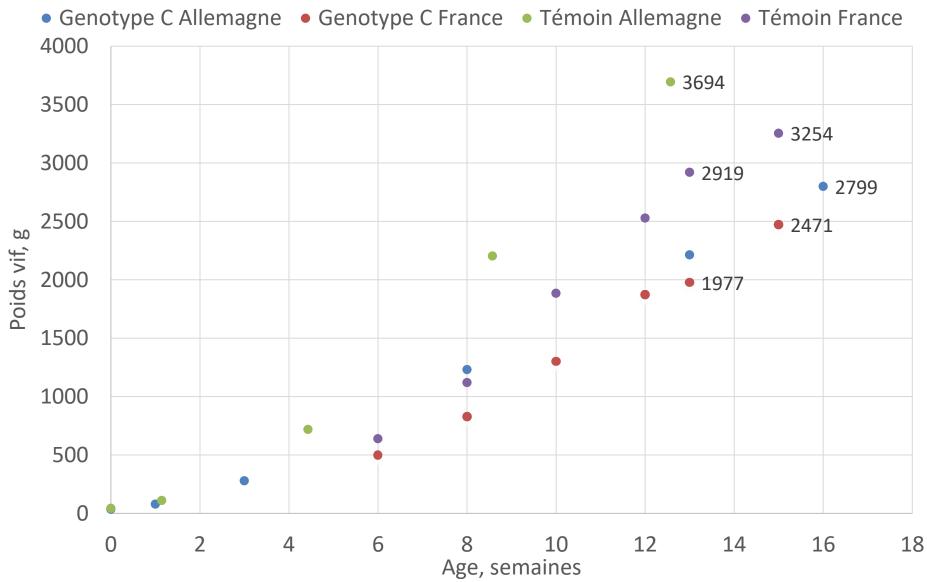
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 816172

Les males issus de souches à double fins

PPILOW Données collectées en fermes sur les mâles

Conditions d'élevage différentes en France et en Allemagne

	France	Allemagne
Nombre d'animaux	C 220/F 220	C 220/D 520
Même lot de poussins	~	~
Alimentation	Différente	Différente
Consommation alimentaire	✓	✓
Indice de conso.	✓	~
Obs. comportementales	×	✓
Indicateurs de BEA	×	~
Mortalité	~	~
Age à l'abattage (sem)	13 et 15	C 16 / D 13
Poids carcasses	~	~
Poids des pièces	~	×



FR: Génotype témoin (S757N)

ALL: Génotype témoin (JA757)

PPILOW Essais en ferme – courbes de croissance

PPILOW Essais en fermes – Résultats techniques

	France		Allemagne	
	С	Témoin	С	Témoin
Mortalité, %	4.6	1.4	11	1.2
Indice de consommation (13 semaines)	3.7	2.7	3.7	2.7
Poids carcasse à 13 semaines, kg	1.38*	1,98*		2.4
Poids carcasse à 15 semaines, kg	1.72*	2.41*		
Poids carcasse à 16 semaines, kg			1.8	

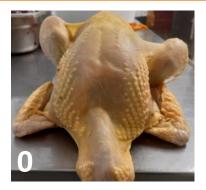

^{*} Cou inclu

PPILOW Essais en fermes – Observations comportementales en Allemagne

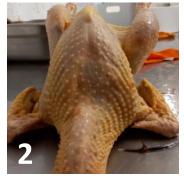
Proportion de chacun des comportements lors d'observations continues la semaine avant l'abattage

PPILOW Essais en fermes – Caractéristiques des carcasses en France

Abattage à 13 semaines: Moy ± ES


Poids	С	Témoin
Cuisses (g)	448 ± 9	668 ± 12
Ailes (g)	180 ± 3	246 ± 4
Filets (g)	201 ± 5	354 ± 11

<u>Abattage à 15 semaines</u>: Moy ± ES


Poids	С	Témoin
Cuisses (g)	574 ± 12	838 ± 9
Ailes (g)	219 ± 6	286 ± 3
Filets (g)	269 ± 4	462 ± 6

Conformation des carcasses

	Genotype	Score 0	Score 1	Score 2
Sem 13	F	100%	0	0
36111 13	С	0	0	100%
Com 1F	F	97%	3%	0
Sem 15	С	4%	39%	58%

PPILOW Essais en fermes - Mâles en France, retour éleveur

Témoignage de Michel Ferriz – La Bassecour Bio

Qu'est ce qui vous à marquer pendant la phase d'élevage des mâles ?

PPILOW Essais en fermes - Mâles en France, retour éleveur

Témoignage de Michel Ferriz – La Bassecour Bio

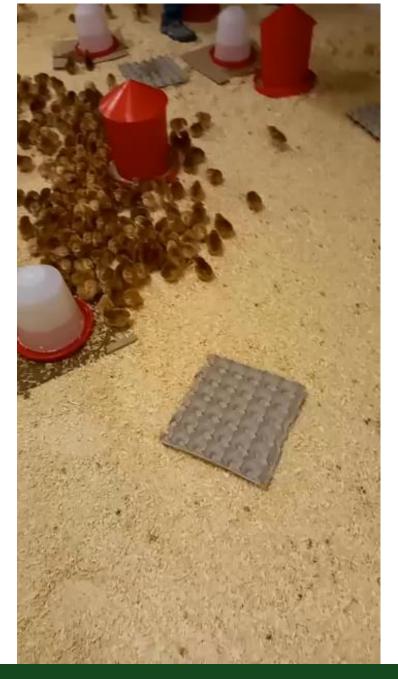
En termes de commercialisation, quels sont vos retours sur cette expérience ?

PPILOW Essais en fermes - Mâles en France, retour éleveur

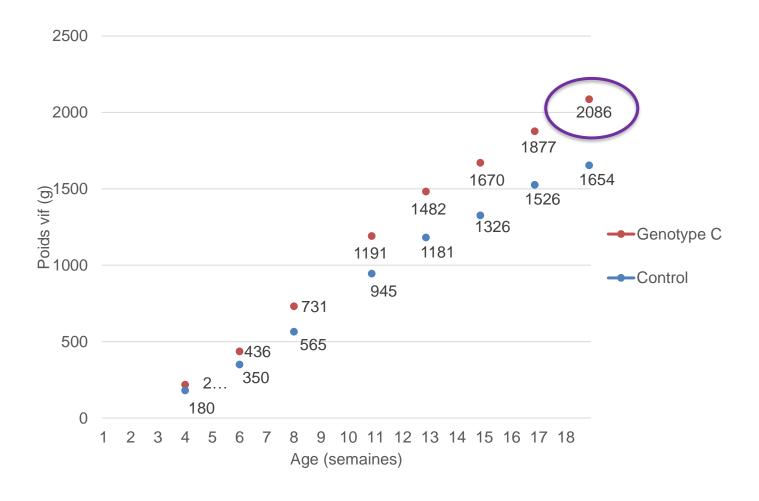
Témoignage de Michel Ferriz – La Bassecour Bio

Seriez vous prêt à élever de nouveau des mâles de souches à double fin sur votre exploitation?

Poultry and Plg Low-input and Organic production systems' Welfare



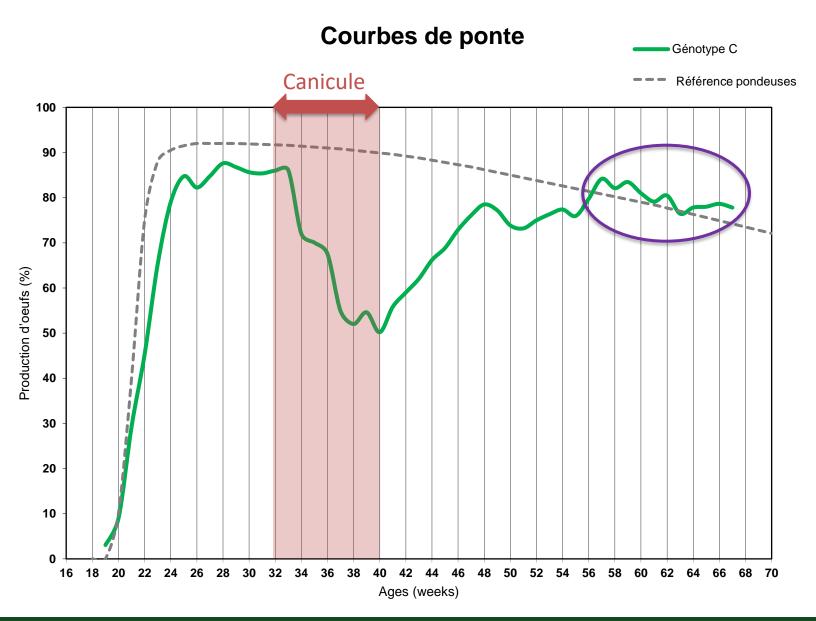
Les femelles issues de souches à double fins


PPILOW Elevage des poulettes

- → Poussins C plus faibles que le lot témoin à l'arrivée sur la ferme
- → Poulettes non épointées
- → Mauvais management au démarrage
- → Elevage de poulettes en claustration : difficile pour les poulettes du génotype C
- → Apparition de picage dans le lot C

PPILOW Elevage des poulettes

Courbes de croissance des poulettes


PPILOW Données collectées en ferme sur les femelles

- → Transfert des poulettes prêtes à pondre vers un autre élevage le 5/4/2022
- → 196 poules génotype C
- → Données collectées :
 - → Mortalité
 - → Distribution d'aliment
 - → Nombre d'œufs pondus/jour
 - → Calibres des œufs
 - → %age d'œufs déclassés

PPILOW Données collectées en ferme sur les femelles

PPILOW Données collectées en ferme sur les femelles

Difficultés rencontrées

- Des conditions externes peu favorables : nouvel élevage, canicule, élevage poulettes
- Picage
- Ponte au sol
 - → Pas suffisament de données pour tirer des conclusions sur la partie femelles
 - → Besoin de cumuler plus d'essais, adapter la conduite d'élevage
 - → Il y a du potentiel mais besoin de plus de recherche pour définir les recommandations permettant d'atteindre le potentiel génétique de ces souches

PPILOW Conclusion

- Les mâles du genotype C ont été élevés dans deux environnements différents
- Jusqu'à 15 ou 16 semaines
- → IC et poids carcasses proches
- → Animaux très actifs
- Les femelles du génotype C ont été élevées (un seul lot) en France
- L'essai est non concluant, recherches à poursuivre

En Europe : un intérêt grandissant pour ces souches à double fins

PPILOW Conclusion

- Une période d'élevage plus longue pour les mâles pour une production moindre que celle des témoins
- ☐ Un IC plus élevé pour les femelles → coûts d'alimentation plus élevés pour le génotype C
- Possible économiquement si prix de vente de la viande et des oeufs plus élevés
- ☐ Perspectives :

Les performances de production des mâles et des femelles doivent être prises en compte pour une évaluation économique complète du genotype C.

- Appliquer un surcoût/oeuf : une solution pour compenser les coûts d'élevage des males ?
- Les animaux du genotype C pourraient-ils valoriser des co-produits de l'industrie agro-alimentaires pour limiter les coûts d'alimentation?

PPILOW PARTENAIRES

Merci pour votre attention

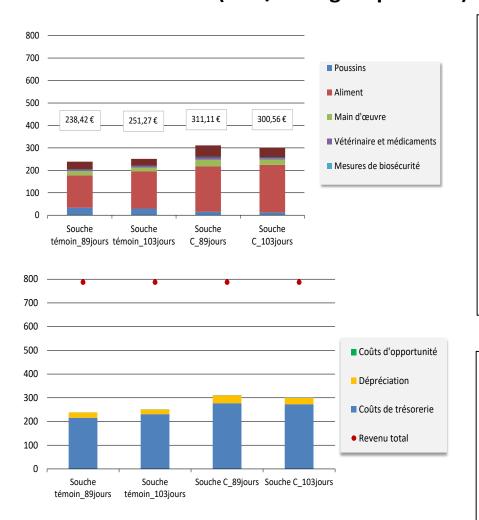
Contacts: sarah.lombard@itab.asso.fr h.pluschke@thuenen.de

www.ppilow.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 816172

Évaluation économique des performances de trois souches à double fin comme alternative à l'élimination des poussins mâles

P Thobe, C Chibanda, H Pluschke


Résultats économiques des mâles de souches à double fin

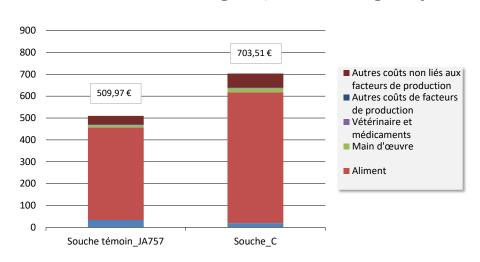
PPILOW WP 7 – Évaluation économique – premiers résultats

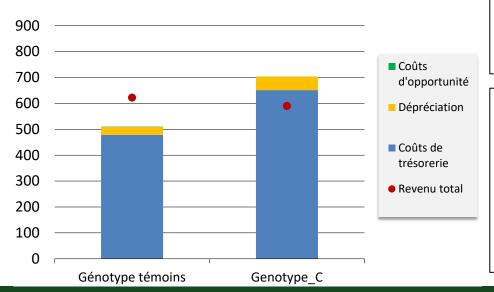
Coûts de production et rentabilité des mâles de souche à double fin des expérimentations en ferme en France (EUR/100 kg de poids vif)

Impact sur les coûts de production en ferme

- Les poulets souche témoin ont des coûts de production inférieurs à ceux des poulets souche C, principalement en raison des coûts élevés de l'alimentation.
- Les poulets souche C sont moins efficaces en termes d'utilisation de l'aliment (Indice de consommation plus élevé). L'élevage des mâles jusqu'à 103 jours entraîne une légère baisse des coûts de production.

Conclusions


- Elevage des témoins rentable à court, moyen et long terme.
- L'élevage des poussins mâles de souche à double fin est rentable seulement si le prix de vente au kg est plus élevé.



PPILOW WP 7 – Evaluation économique – premiers résultats

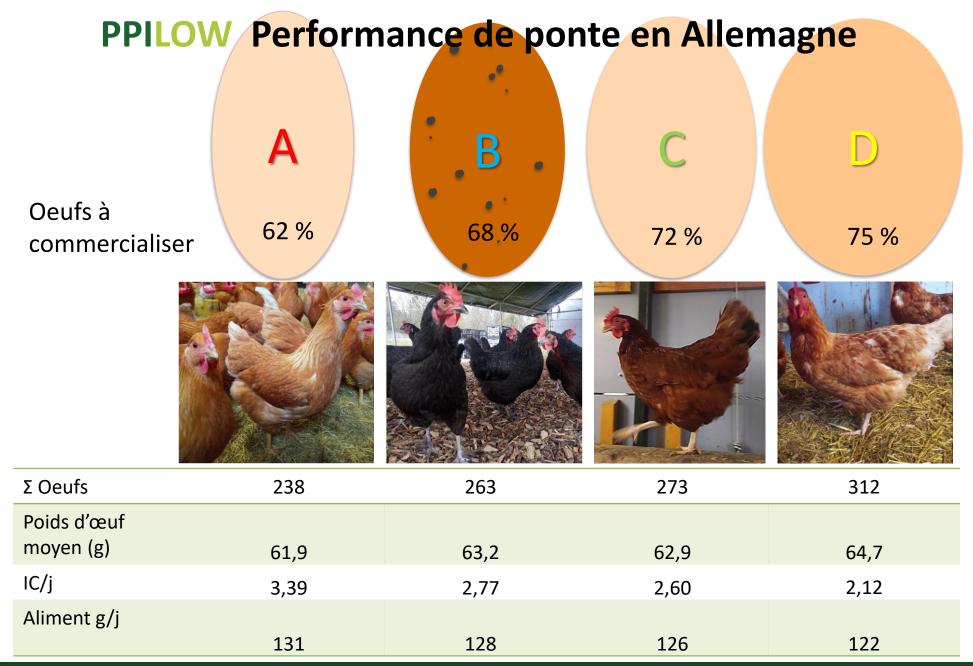
Coûts de production et rentabilité des mâles de souches à double fin des expérimentations en ferme en Allemagne (EUR/100 kg de poids vif)

Impact sur les coûts de production en ferme :

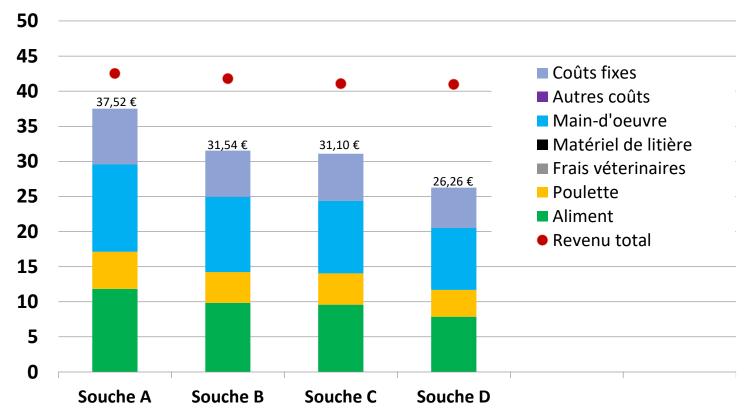
- Les poulets témoins ont des coûts de production inférieurs à ceux des poulets du génotype C.
- Le génotype C a des coûts de production plus élevés en raison des coûts de consommation plus élevés (l'indice de consommation est 40 % plus élevé et le gain de poids par jour est inférieur de 60 %).

Conclusions

 L'élevage de poulets du génotype témoins est rentable, tandis que l'élevage du génotype C ne l'est pas, en raison des coûts d'aliment relativement au prix de vente.



Résultats économiques des femelles de souche à double fins



PPILOW Évaluation économique : Poule – "en-station"

Comparaison des coûts complets (€ centimes par œuf)

- Prix des œufs pour le bâtiment fixe : 34 centimes par œuf
- Prix des œufs en bâtiment mobile : 38 centimes par œuf
- C par rapport au groupe de témoins D : + 4,8 centimes par œuf (+ 18 %)
- A par rapport au groupe de témoins D : + 11,3 centimes par œuf (+43 %)

PPILOW Conclusions

Point de vue économique:

- Performances économiques de ponte et de croissance de souche C moins bonnes que celles des souches spécialisées.
- Élevage de souches à double fin possible qu'avec une augmentation des prix de vente par rapport aux produits "habituels".

PPILOW Conclusions / Perspectives

Perspectives / Les paramètres d'une production économiquement viable:

- Grande importance des **stratégies d'aliment alternatives**
- Cabane économique (e.g. anciens bâtiments)
- Structure de commercialisation en fonction de la situation géographique
- Prix couvrant les coûts pour les œufs et la viande
- **Label** pour les souches à double fin justifié?
- **Quotas obligatoires** de souches à double fin?
- **Soutien financier** de l'État
- La mise en valeur: une stratégie de communication appropriée (sensibilisation)

PPILOW PARTENAIRES

Merci pour votre attention

Contacts: p.thobe@thuenen.de h.pluschke@thuenen.de sarah.lombard@itab.asso.fr

www.ppilow.eu

