

NPG meeting – PPILOW Workshop on Pig Castration

Research studies on intact boars:
Strategies to prevent undesired
behaviours in intact male pigs and to
avoid boar taint in the end-products

Bénédicte Lebret and Armelle Prunier INRAE PEGASE, Saint-Gilles, France

PPILOW project - Task 4.3

Objectives

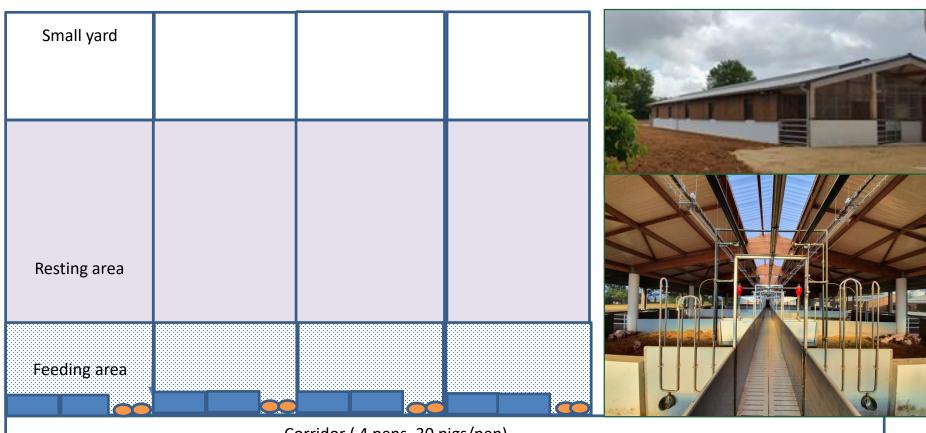
- Develop strategies to prevent undesired behaviours (mounting, aggressions) in intact male pigs and to avoid boar taint (androstenone, skatole) in the end-products
- ➤ Allow ending of surgical castration in good conditions for animals, producers and consumers

INRAE experiment: objectives

- ➤ Welfare, boar taint, carcass and quality of meat from entire male pigs in organic system according to genotype: Duroc (x Large White) vs Piétrain (x Large White) crossbreeds
- ▶ Prediction of boar taint risk at lower live weight (85 or 105 vs 125 kg)
 Piétrain: standard genotype, highly used in conventional and organic pig production, low risk for boar taint

Duroc: improved meat tenderness, juiciness and technological quality but higher risk for boar taint (Lebret & Candek-Potokar, 2022)

Differences in animal behaviour between Duroc and Piétrain crossbreeds (Terlouw et al.)

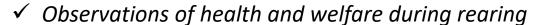

Animal experiment: INRAE Porganic experimental facilities

✓ Partners: IFIP (animal welfare), Nucleus (genetic selection), Cooperl (slaughterhouse)

INRA@ Porganic experimental facilities

Corridor (4 pens, 30 pigs/pen)

- 2 pens filled every 6 weeks
- 1 pen LWxPietrain, the other LWxDuroc



Animal experiment

INRAE "Porganic", October 2021 – March 2022

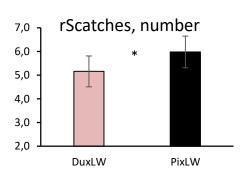
- ✓ 2 experimental replicates, each including one group of entire males per genotype
 - => 47 DuxLW and 34 PixLW in total
- ✓ Feeding: growing and finishing organic diets (ad libitum)
 and hay in a rack
- ✓ 2 slaughtering sessions per replicate, with similar number of pigs from each genotype

- ✓ Blood sampling during fattening (2 to 4 samples/pig)
- ✓ Growth performance and carcass traits
- ✓ Meat quality traits and boar taint components

Main Results

Indicators of health and welfare

Health indicators	Duroc x LW	Pietrain x LW
Mortality rate	0 %	5.6 %
Bad general state (% pigs)	0.7	0
Pigs with lameness, score of severity (% pigs)		
- 0: no sign of lameness	100	97.1
- 1	0	1.0
- 2	0	0
- 3 = severely lame, impossible to walk	0	1.9


First descriptive analysis: lower mortality rate and lameness for Duroc vs Pietrain crossbred males

Indicators of health and welfare

Welfare indicators on farm	Duroc x LW	Pietrain x LW
Pigs with skin wounds larger than 5 cm (% pigs)	1.4	2.9
Pigs with at least 15 scratches on one side (% pigs)	0	24
Pigs with tail lesions, score of severity (% pigs)		
- 0: no sign of lesion	95.2	96.5
- 1	4.8	3.5
- 2	0	0
- 3 = severe lesion	0	0

Carcass scratches at slaughterhouse (square root values)

- Lower skin wounds and scratches scores for Duroc vs Pietrain crossbred males (due to lower aggressive or mounting behaviours – or lower sensitivity of skin of Duroc to scratches?)
- > Improvement of health and welfare of entire males with Duroc vs Pietrain crossbred pigs, to be confirmed with complementary statistical analyses

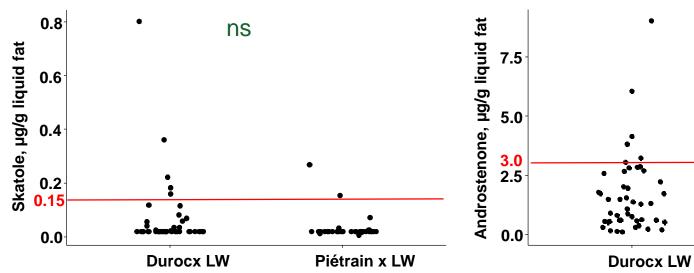
Growth performance and carcass traits

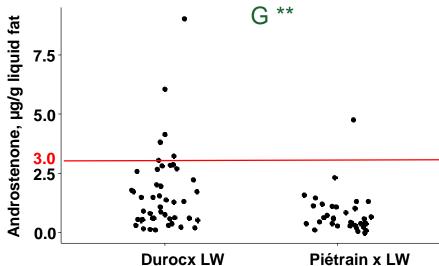
	Duroc x LW	Pietrain x LW	Significance
Number of pigs	47	34	
Final live weight, kg	124.2	125.4	
Average growth rate (27-125kg), g/d	952	966	
Carcass weight, kg	96.5	98.4	G*
Lean meat content, %	58.9	60.8	G***

(mixed model, fixed effects of genotype: **G** and replicate: **R**; ***: P<0.001, *: P<0.05)

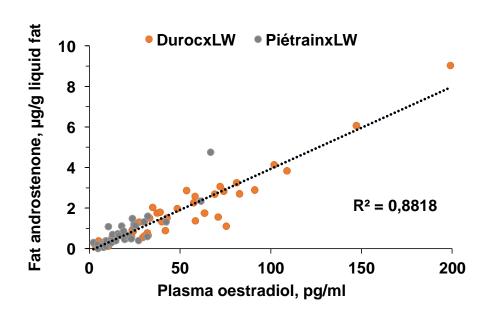
- > Similar growth performance
- Lower lean content for Duroc carcasses (higher fat and lower muscle thickness)

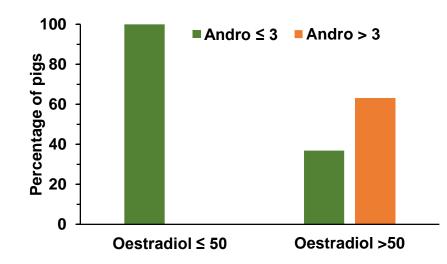
	Duroc x LW	Pietrain x LW	Sign.
pH 24 h	5.51	5.50	
Drip loss,%	4.70	5.66	G*
Colour: lightness (L*)	48.9	50.0	G*
Colour: redness (a*)	9.97	9.22	G*
Intramuscular fat content, %	2.50	1.90	G***
Shear force of cooked meat, N	33.2	35.0	G ^t


(mixed model, G and R fixed effects, slaughter day(replicate) as random, ***: P<0.001, *: P<0.05, t: P<0.10)


- Similar ultimate pH (also in ham muscles)
- Overall: higher water-holding capacity, redness and IMF, lower lightness and toughness of pork in Duroc pigs => higher technological and sensory quality

Boar taint components in backfat



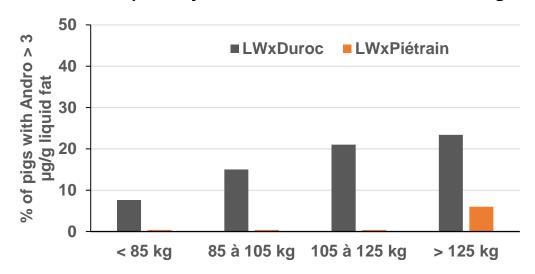

- Similar average skatole content in both genotypes
- Higher average fat androstenone content in Duroc than Pietrain crossbreeds
- Only 1 Duroc carcass detected as odorant at slaughterhouse (highest skatole content)
- Considering **limits of "perception"** (rejection) by consumers to be **0.15** µg/g for skatole and 3.0 μg/g for androstenone, more carcasses from Duroc (17.4%) than Pietrain (8.8%) crossbreeds would be rejected

Plasma oestradiol and relationships with androstenone in backfat

- Higher plasma oestradiol for Du vs Pi pigs
- Very high correlation between plasma oestradiol and fat androstenone
 - => plasma oestradiol can be used to predict fat androstenone

Estimation of risk for boar taint related to androstenone

- ≤ 50 pg oestr./ml plasma: close to 0
- > 50 pg oestr./ml plasma: close to 60 %



Influence of genotype and reduction of live weight at slaughter on the risk for boar taint

On each pig: 2 to 4 blood samples during fattening

Calculation of boar taint risk due to androstenone at given slaughter weight, considering:

- Risk = 0 for plasma oestradiol ≤ 50 pg/ml and risk = 63% for oestradiol > 50 pg/ml
- Risk due to skatole: very low if environmental conditions are good

- ➤ Pietrain : very low risk below 125 kg, close to 6% above 125 kg live weight
- Duroc : **gradual increase of risk** from ≈ 8% below 85 kg to ≈ 23% above 125 kg live weight
- > Risk due to skatole: probably independent of live weight, low in both genotypes if good environmental conditions: clean animals (clean bedding) and good air renewal

Conclusions

Effects of Duroc vs Pietrain genotype

Health and welfare

 Improved health and welfare for entire males from Duroc vs Pietrain crossbreeds, to be confirmed with complementary analyses

Growth performance and carcass traits

- Similar growth performance between both genotypes
- Lower carcass leanness (-> lower commercial value) for Duroc vs Pietrain

Meat quality

- Higher technological quality (i.e. ability for processing) of Duroc vs Pietrain
- Indicators (intramuscular fat, shear force) suggest higher meat tenderness,
- But higher risk for boar taint (androstenone) for Duroc than Pietrain crossbreeds

Conclusions

Risk for boar taint

Reduction of live weight at slaughter

- Decreases the risk for androstenone, especially for Duroc crossbreeds
- For both genotypes, avoid live weight above 125 kg

Pig rearing conditions

 Diet (fibers) and pig environment: cleanliness of pens/pigs, air renewal should decrease the risk due to skatole (-> IFIP complementary experiment, PPILOW project)

Thank you for your attention!

Questions?

