

PPILOW Workshop-USAMV Cluj-Napoca, Romania

- Part I"Phytotherapeutic remedies used in swine low input farms, their antiparasitic efficacy"

In collaboration with:

- Academy of Agricultural and Forestry Sciences Gheorghe Ionescu-Siseşti
- The Association of Farmers of Traditional pig breeds: Bazna and Mangalitsa

The antiparasitic efficacy of some medicinal and aromatic plants found in the flora of Romania against naturally occurring digestive parasites of swine

Introduction

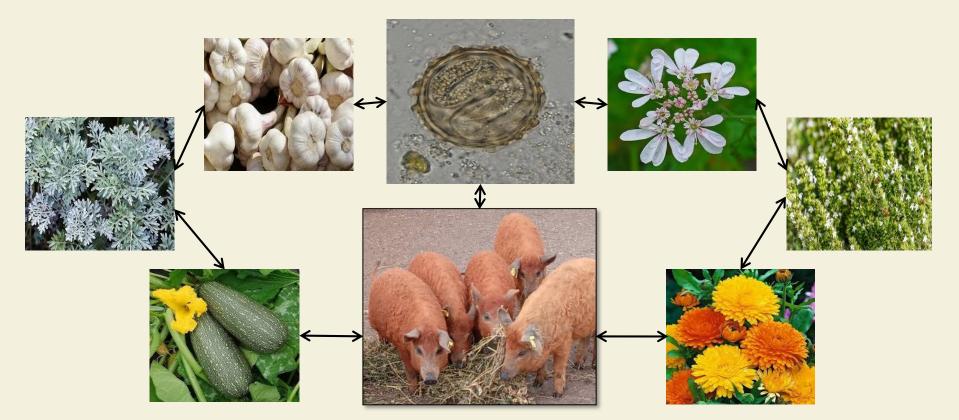

- Parasitic diseases have a considerable effect on pig production, causing economic losses due to high morbidity and mortality.
- Due to continuously increasing drug resistence in parasites and prohibited use of antiparasitic medications in organic pig farming practices, phytotherapy could represent a valid, biologically available and cost effective alternative for parasite control.
- The use of phytotherapeutic remedies has notably increased over the past decade due to their biodegradability, decreased toxicity, environmentally friendliness, and to some extent their antiparasitic effect.

Fig. 1. Picture showing a free-range farm.

<u>Aims</u>

- The primary objective of this research was to identify a plant-based formula that exhibits effectiveness in combating pig parasitoses without interfering with their welfare and health.
- The present study was designed to assess the antiparasitic potential of Allium sativum, Artemisia absinthium, Cucurbita pepo, Coriandrum sativum, Calendula officinalis, and Satureja hortensis on naturally occurring gastrointestinal parasites of swine in two free-range (low-input) farms from Transylvania.

Materials and methods

1. Biochemical analyses of medicinal plants

High performance liquid chromatography coupled with mass spectrometry (HPLC/MS) was used for the analysis of biologically active compounds present in the plant extracts. All the procedures were performed at the Iuliu Haţieganu University of Medicine and Pharmacy, in Cluj-Napoca.

2. Experimental design and swine husbandry

- For each farm and plant:
 - 3 control groups
 - 10 weaners, 10 fatteners and 10 sows
 - □ 3 experimental groups
 - 10 weaners, 10 fatteners and 10 sows
 - received <u>A. sativum</u> in a dosage of <u>180 mg/kg BW/day</u> and <u>A. absinthium</u> in a dosage of <u>90 mg/kg BW/day</u> for 10 consecutive days
 - received <u>C. sativum</u> in a dosage of <u>170 mg/kg BW/day</u> and <u>C. pepo</u> in a dosage of <u>500 mg/kg BW/day</u> for 10 consecutive days
 - received <u>C. officinalis</u> in a dosage of <u>140 mg/kg bw/day</u> and <u>S. hortensis</u> in a dosage of <u>100 mg/kg BW/day</u> for 10 consecutive days

Materials and methods

2160 faecal samples were collected from weaners, fatteners, and sows.
 Coproparasitological examination methods: flotation (Willis, McMaster), active sedimentation, modified Ziehl-Neelsen stained fecal smear, modified Blagg technique and oocysts/eggs cultures.

Fig. 2. Materials required for the coproparasitological methods.

I. In vivo assessment of the antiparasitic effects of Allium sativum and Artemisia absinthium against gastrointestinal parasites in swine, from low-input farms, in NW of Romania

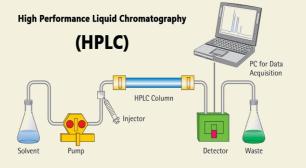
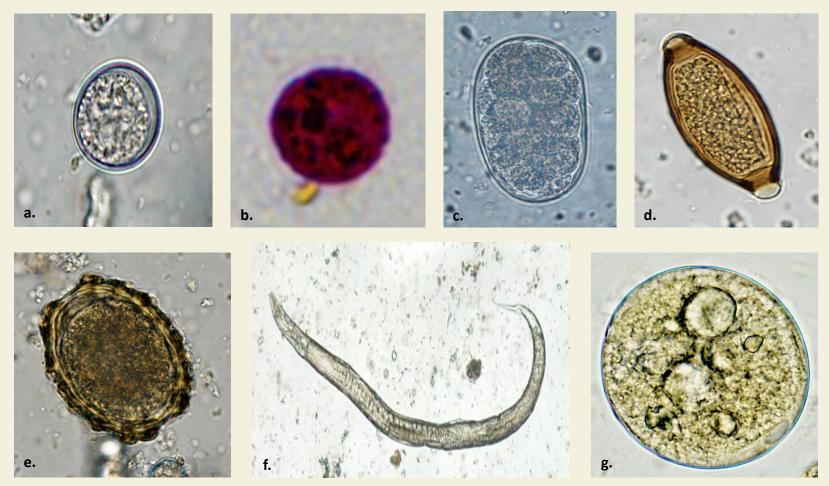


Table 1. The HPLC/MS analysis of chemical compounds in alcoholic plant extracts (10%)

Bioactive com	oounds	Vegetal species and plant part used for extraction and HPLC-MS analysis					
		Artemisia absinthium L.	Allium sativum L.				
		herba	bulbus				
Polyphenols (µg/mL)	Chlorogenic acid	107.15	-				
	Caffeic acid	-	1.221				
	p-coumaric acid	0.621	-				
	Ferulic acid	0.759	0.456				
	Sinapic acid	-	0.228				
	Vitexin	1.631	-				
	Isoquercitrin	56.754	-				
	Rutoside	3.826	-				
	Quercitrin	1.113	-				
	Quercetol	6.285	-				
	Luteolin	1.159	-				
	Kaempferol	3.666	-				
	Apigenin	0.481	-				
	Syringic acid	1.85	-				
	Protocatechuic acid	1.32	-				
	Vanillic acid	1.98	-				



Bioactive comp	oounds	Vegetal species and plant part used for extraction and HPLC-MS analysis				
		Artemisia absinthium L.	Allium sativum L.			
		herba	bulbus			
Tocopherols (ng/mL)	α-tocopherol	50.0	36.1			
	γ-tocopherol	23.8	-			
	∆-tocopherol	5.0	-			
Sterols (µg/mL)	Ergosterol	0.344	-			
	Stigmasterol	34.831	-			
	B-sitosterol	140.985	-			
	Campesterol	3.329	-			
Methyoxylated flavones	Jaceosidin	-	-			
(ng/mL)	Hispidulin	3047.92	-			
	Eupatorin	976.53	-			
	Casticin	15384.14	-			
	Acacetin	-	-			
Sesquiterpene lactones (ng/ml)	α-santonin	450.52	-			
	Vulgarin	6499.39	-			
Sulfoxide (µg/mL)	Aliin	-	14.726			

HPLC/MS—high performance liquid chromatography coupled with mass spectrometry; "-"—Not found;

The examination revealed parasitic infections with *Balantidium coli*, *Eimeria* spp., *Cryptosporidium* spp., *Ascaris suum*, *Trichuris suis*, *Oesophagostomum* spp. and *Strongyloides ransomi*.

Fig. 3. Coproparasitological examination results: a- *Eimeria spp.* oocyst, b- *Cryptosporidium* spp. cyst, c-*Oesophagostomum spp.* egg, d- *T. suis egg, e- A. suum* egg, f- S. ransomi female and g- B. coli.

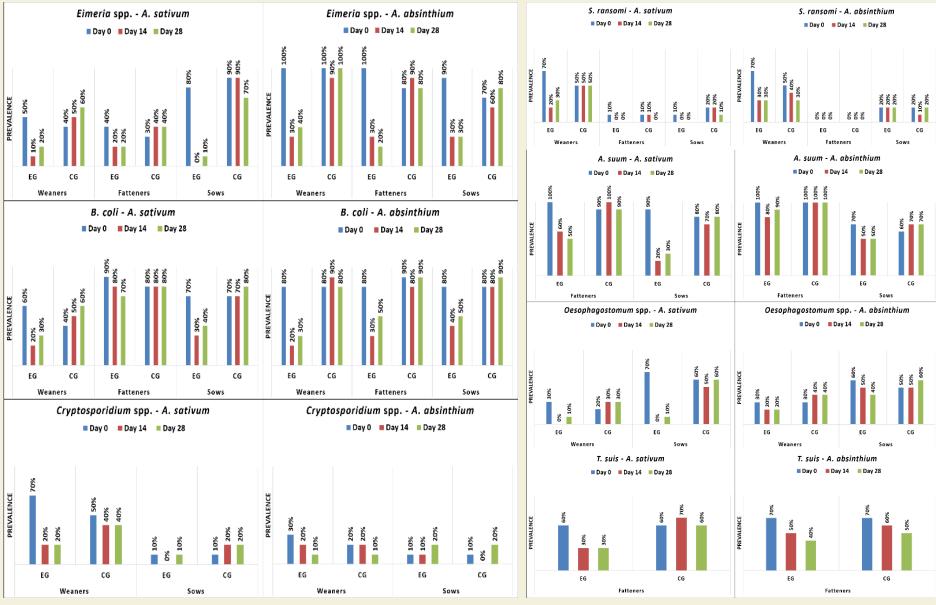


Fig. 4. Prevalence (%) of investigated protozoa and nematodes on farm 1 by age group (EG = experimental group; CG = control group).

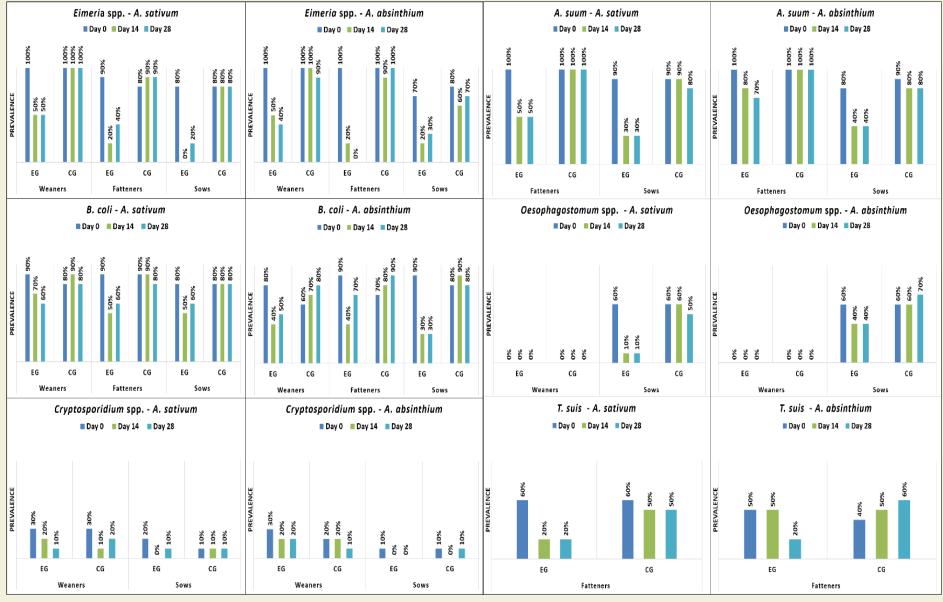


Fig. 5. Prevalence (%) of investigated protozoa and nematodes on farm 2 by age group (EG = experimental group; CG = control group).

Table 2 .Percentage of faecal egg/oocyst/cyst count reduction (%) recorded on days 14, and 28 post-treatmentin F1 and F2 farms (using FECR formula)

	A. sativum (14)						A. sativum (28)							
Parasite	Wea	ners	Fatte	eners	So	ws	Wea	ners	Fatte	eners	So	ws		
Parasite	F1	F2	F1	F2	F1	F2	F1	F2	F1	F2	F1	F2		
Eimeria spp.	76.7	82.1	62.1	79.6	100	100	88.1	84.6	20.0	84.1	78.9	83.5		
B. coli	59.8	74.2	76.1	75.1	82.3	66.3	47.9	72.3	66.7	69.8	55.8	67.8		
A. suum	-	-	82.3	79.8	87.6	72.1	-	-	84.7	86.3	68.2	62.8		
T. suis	-	-	66.7	76.6	-	-	-	-	63.9	54.1	-	-		
Oesophagosto	100				100	87.5	88.7				67.3			
<i>mum</i> spp.	100	-	-	-	100	07.5	00.7	-	-	-	07.5	45.8		
S. ransomi	64.4	-	100	-	100	-	57.3	-	100	-	100	-		
		4	A. absint	hium (14	•)		A. absinthium (28)							
Parasite	Wea	ners	Fatte	eners	So	ws	Weaners Fatteners				Sows			
Palasite	F1	F2	F1	F2	F1	F2	F1	F2	F1	F2	F1	F2		
Eimeria spp.	74.2	84.0	71.8	33.1	65.8	92.4	71.5	84.9	85.1	100	56.3	89.8		
B. coli	72.1	88.4	60.3	37.7	58.7	88.0	63.3	80.6	46.9	71.9	31.6	85.1		
A. suum	-	-	71.3	64.9	44.7	80.5	-	-	70.4	64.3	30.2	78.6		
T. suis	-	-	50.4	39.5	-	-	-	-	49.9	79.2	-	-		
Oesophagosto mum spp.	33.2	-	-	-	49.5	63.1	25.1	-	-	-	43.8	66.7		
S. ransomi	36.2	-	-	-	44.4	-	31.3	-	-	-	69.1	-		

"-"= was not diagnosed

Conclusions

- This experiment was conducted between April and July 2021, on two free-range (low-input) Transylvanian farms, involving pigs of the Bazna and Mangalitza breeds.
- Both plant powders at the previously mentioned doses for 10 consecutive days had a strong antiprotozoal and anthelmintic activity, with A. sativum being more effective.
- A. sativum and A. absinthium have the potential of treating gastrointestinal parasitosis in swine.
- The antiparasitic efficacy can be attributed to the presence of polyphenols, tocopherols, flavonoids, sesquiterpene lactones and sulfoxide.

II. The effects of *Coriandrum sativum* L. and *Cucurbita pepo* L. against gastrointestinal parasites in swine: An *in vivo* study

Results

Table 3. The HPLC/MS analysis of chemical compounds in alcoholic plant extracts (10%)


Chemical class	Chemical compound	Plant species and plant part used for the results of HPLC-						
		Coriandrum sativum L.fruitChlorogenic acid4.177p-coumaric acid0.501Ferulic acid0.759Rutoside <loq< td="">Syringic acid0.09Vanillic acid0.94γ-tocopherol-</loq<>						
		fruit	seed					
Polyphenols (µg/mL)	Chlorogenic acid	4.177	-					
	p-coumaric acid	0.501	-					
	Ferulic acid	0.759	-					
	Rutoside	<loq< td=""><td>-</td></loq<>	-					
	Syringic acid	0.09	-					
	Vanillic acid	0.94	-					
Tocopherols (ng/mL)	γ-tocopherol	-	446.0					
	Δ-tocopherol	-	23.2					
Sterols (µg/mL)	Ergosterol	0.584	-					
	Stigmasterol	9.675	22.024					
	B-sitosterol	31.548	5.355					
	Campesterol	1.780	0.358					

HPLC/MS—high performance liquid chromatography coupled with mass spectrometry; "-"—Not found; <LOQ identified based on MS spectra but not determined quantitatively, below limit of quantification.

The examination revealed parasitic infections with *Balantioides coli*, *Eimeria* spp., *Cryptosporidium* spp., *Ascaris suum*, *Trichuris suis*, and *Oesophagostomum* spp.

Fig. 6. Coproparasitological examination results: a- Eimeria spp. oocyst, b- T. suis egg, c- A. suum egg, d-Cryptosporidium spp. cyst, e- Oesophagostomum spp. egg, and f- B. coli.

Fig. 7. Prevalence (%) of parasites in **weaners** by treatment (EG = experimental group; CG = control group).

Fig. 8. Prevalence (%) of parasites in **fatteners** by treatment (EG = experimental group; CG = control group).

Fig. 9. Prevalence (%) of parasites in sows by treatment (EG = experimental group; CG = control group).

Table 4 .Percentage of faecal egg/oocyst/cyst count reduction (%) recorded on days 14, and 28 post-treatmentin F1 and F2 farms (using FECR formula)

		<i>C. sativum</i> (14)						C. sativum (28)							
Parasite	Wea	ners	Fatteners		Sows		Weaners		Fatteners		Sows				
raraste	F1	F2	F1	F2	F1	F2	F1	F2	F1	F2	F1	F2			
Eimeria spp.	71.4	72.1	80	30.6	60	41.5	100	25.4	100	100	50	75.7			
B. coli	29.6	68.9	44.4	62.4	23.2	74.2	84.4	79.5	50.4	20.1	67.4	31.2			
A. suum	-	18.1	8.1	13.9	-	0	-	30.3	0	7.2	-	0			
T. suis	-	0	0	0	-	-	-	3.3	0	0	-	-			
			С. рер	oo (14)			С. реро (28)								
Parasite	Wea	ners	Fatte	eners	So	ws	Weaners Fatteners				Sows				
	F1	F2	F1	F2	F1	F2	F1	F2	F1	F2	F1	F2			
Eimeria spp.	11.6	96.6	13.9	33.3	45.4	0	24.9	94.7	35.9	0	61.1	0			
B. coli	2.3	59.5	22.9	54.9	3.0	30.1	0	34.1	45.1	24.8	33.6	22.2			
A. suum	77.4	80.9	83.5	79.7	87.1	70.3	79.7	100	84.5	95.9	85.9	88.9			
T. suis	91.6	80.7	50.1	75.0	-	-	91.0	100	57.7	100	-	-			

"-"= was not diagnosed; "0"= was identified, but had no efficacy

Conclusions

- This experiment was carried out between September and December 2021, on two low-input farms, located in the Transylvania area, involving pigs of the Bazna and Mangalitza breeds.
- Both plant powders at the previously mentioned doses for 10 consecutive days, were efficient against gastrointestinal parasites in swine. Coriander was more effective against protozoa while pumpkin showed better efficacy against helminths.
- Considering all the constraints of Romanian livestock farming, these results are a beacon of hope for better management and welfare practices in the swine farming.
- In addition, to the best of our knowledge, this is the first ethnopharmacological report on the antiparasitic effects of *C. pepo* and *C. sativum* traditionally used in Romania for treating protozoa and nematode infections in swine.

III. Satureja hortensis L. and Calendula officinalis L., two Romanian plants with *in vivo* antiparasitic potential on digestive parasites of pigs

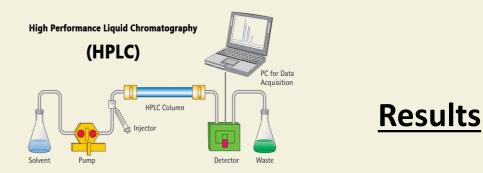
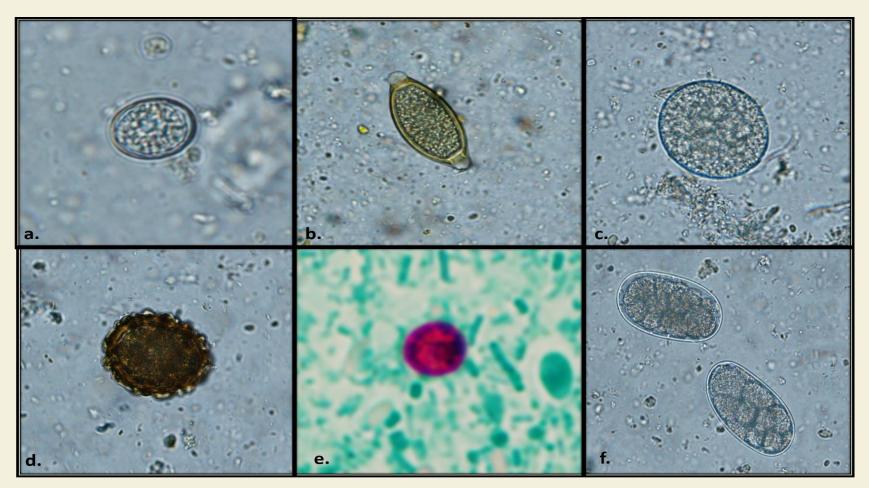


Table 5. The HPLC/MS analysis of chemical compounds in alcoholic plant extracts (10%)

Chemical class	Chemical compound	Plant species and plant part used for extract preparation and th results of HPLC-MS analysis						
		Calendula officinalis L.	Satureja hortensis L.					
		aerial part	aerial part					
Polyphenols (µg/mL)	Chlorogenic acid	220.767	<loq< td=""></loq<>					
	Caffeic acid	-	<loq< td=""></loq<>					
	p-coumaric acid	-	1.464					
	Ferulic acid	-	0.557					
	Isoquercitrin	38.877	6.515					
	Rutoside	18.819	<loq< td=""></loq<>					
	Quercitrin	<loq< td=""><td>0.365</td></loq<>	0.365					
	Quercetol	-	0.394					
	Luteolin	-	6.621					
	Apigenin	-	2.442					
	Syringic acid	1.51	2.28					
	Protocatechuic acid	0.67	0.95					
	Vanillic acid	0.44	0.65					

Chemical class	Chemical compound	Plant species and plant part used fo results of HPLC-N	• •
		Calendula officinalis L.	Satureja hortensis L.
		aerial part	aerial part
Tocopherols (ng/mL)	α-tocopherol	61.6	86.8
	γ-tocopherol	248.9	89.0
	Δ-tocopherol	9.3	13.2
Sterols (µg/mL)	Ergosterol	0.500	1.420
	Stigmasterol	72.888	14.215
	B-sitosterol	241.997	313.315
	Campesterol	1.635	6.140
Methoxylated flavones	Jaceosidin	_	8820.76
(ng/mL)	Hispidulin	_	2483.00
	Acacetin	-	12691.97


HPLC/MS—high performance liquid chromatography coupled with mass spectrometry; "-"—Not found; <LOQ—identified based on MS spectra but not determined quantitatively, below limit of quantification.

The examination revealed parasitic infections with *Balantioides coli*, *Eimeria* spp., *Cryptosporidium* spp., *Ascaris suum*, *Trichuris suis*, and *Oesophagostomum* spp.

Fig. 10. Coproparasitological examination results: **a**- *Eimeria spp.* oocyst, **b**- *T. suis egg, c*- *B. coli* cyst, **d**- *A. suum* egg, *Cryptosporidium* spp. oocyst and **e**- *Oesophagostomum spp.* egg.

Table. 6 Percentage of faecal egg/oocyst/cyst count reduction (%) recorded on days 14, and 28 post-treatment in F1and F2 farms (using FECR formula)

			C. offici	nalis (14)		C. officinalis (28)					
Parasite	Wea	aners	Fatte	eners	So	ws	Wea	ners	Fatte	ners	So	ws
	F1	F2	F1	F2	F1	F2	F1	F2	F1	F2	F1	F2
A. suum	-	-	15.2	10.3	-	49.9	-	-	54.2	34.9	-	79.9
T. suis	-	-	-	8.2	-	-	-	-	-	20.3	-	-
Oesophagostomum spp.	-	60.5	-	-	-	28.6	-	32.9	-	-	-	45.8
Eimeria spp.	91.8	42.5	95.5	75.9	-	74.9	72.5	57.1	88.9	30.0	-	76.5
B. coli	72.0	90.9	73.1	53.6	84.9	69.8	74.7	69.2	58.3	61.1	76.1	58.2
			S. horte	ensis (14)			S. hortensis (28)					
Parasite	Weaners		Fatteners		Sows		Weaners		Fatteners		Sows	
	F1	F2	F1	F2	F1	F2	F1	F2	F1	F2	F1	F2
A. suum	-	-	70.8	77.1	91.1	88.7	-	-	77.1	81.2	72.1	59.7
T. suis	-	-	80.5	84.0	-	-	-	-	90.3	87.1	-	-
Oesophagostomum spp.	-	-	-	-	80.2	69.2	-	-	-	-	100	83.7
Eimeria spp.	78.2	68.7	76.3	89.7	25.1	70.3	66.8	80.3	46.8	83.8	80.9	94.1
B. coli	80.1	88.4	63.5	74.7	70.2	70.5	83.6	86.5	72.2	71.2	70.7	74.6

"-"= was not diagnosed;

Conclusions

- The present experiment was conducted between April and June 2022, on two low-input (free-range) farms, located in the Transylvania area, involving pigs of the Bazna and Mangalitza breeds.
- Both plant powders at the previously mentioned doses for 10 consecutive days, showed promising *in vivo* antiparasitic activity.
- C. officinalis had a strong antiprotozoal activity and mildly antihelmintic effects while S. hortensis was very effective against both helminths and protozoa infections.
- The antiparasitic efficacy can be attributed to the presence of polyphenols, sterols, tocopherols and flavonoids.
- The current study is the first report about the antiparasitic effects of *C. officinalis* and *S. hortensis* against digestive parasites of pigs, from Romania.

This project has received funding from the **European Union's Horizon 2020** research and innovation programme under grant agreement N°816172.

Thank you for your attention!

