Poultry and PIg Low-input and Organic production systems' Welfare

An index for adaptability evaluation of slow-growing chicken genotypes reared in free-range system

<u>S. Mattioli</u>, L. Menchetti, E. Angelucci, A. Cartoni Mancinelli, A. Dal Bosco, L. Madeo, D. Chiattelli, F. Di Federico, C. Castellini

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 816172

INTRODUCTION

Outdoor adaptability criteria

Extensive Rearing System (ERS) must optimize a production system that promotes biodiversity, environmental sustainability and food safety (National Organic Standards Board, 1995)

Simona Mattioli

What means suitable broiler genotypes adapted to outdoor system?

ADAPTABILITY

- Mancinelli, A. C., Amato, M. G., Zillio, D. M., Dal Bosco, A., Mattioli, S., & Castellini, C. (2017). Chicken adaptability in alternative systems adaptive response of chicken strains to the organic and free range rearing systems. J. Dairy Vet. Sci, 4(4).
- Guarino Amato, M., & Castellini, C. (2022). Adaptability challenges for organic broiler chickens: a commentary. Animals, 12(11), 1354.

75th EAAP Annual Meeting, 1/5 September 2024 - Florence, Italy

Simona Mattioli

- Cartoni Mancinelli, A., Mattioli, S., Menchetti, L., Dal Bosco, A., Ciarelli, C., Guarino Amato, M., & Castellini, C. (2021). The assessment of a multifactorial score for the adaptability evaluation of six poultry genotypes to the organic system. Animals, 11(10), 2992.
- Castellini, C., Mugnai, C., Moscati, L., Mattioli, S., Guarino Amato, M., Cartoni Mancinelli, A., & Dal Bosco, A. (2016). Adaptation to organic rearing system of eight different chicken genotypes: behaviour, welfare and performance. Italian journal of animal science, 15(1), 37-46.
 Cartoni Mancinelli, A., Mattioli, S., Dal Bosco, A., Aliberti, A., Guarino Amato, M., & Castellini, C. (2020). Performance, behavior, and welfare status of six different organically reared poultry genotypes. Animals, 10(4), 550.

Mattioli, S., Mancinelli, A. C., Menchetti, L., Dal Bosco, A., Madeo, L., Amato, M. G., ... & Castellini, C. (2021). How the kinetic behavior of organic chickens affects productive performance and blood and meat oxidative status: A study of six poultry genotypes. Poultry Science, 100(9), 101297.

MATERIAL & METHODS

- 100 hundred chicks/strain of both sexes were used.
- Chickens were reared in pens (2 pens/strain) with an indoor (0.10 m²/bird) and outdoor (4 m²/bird) area.
- The animals fed *ad libitum* the same starter and grower diets.
- At 81 days of age, 15 chickens/pen were selected and slaughtered.
- Many variables have been evaluated:
 - On-farm (productive performances, behaviors, lesions and feather conditions)
 - In vivo parameters (blood)
 - Carcasses and Meat cuts (breast and drumstick)

ASPA2023 - Bari 13th-16th June 2023

4

MATERIAL & METHODS: pillars

Behaviour	Performance	Health status	Physical -chemical traits	Meat oxidative status	Meat fatty acids profile and indexes	Blood fatty acids profle	Blood traits
Behaviour Running Attack Swell Rest Allo-grooming Grooming Escape Grass Pecking Walking Stretching Hide Other_peck. Sand Scratch	Performance Carcass Weight Drumstick (no bone) Breast Weight Bust Yield Breast Yield Bone Weight Live Weight Tibia Length Breast Thickness Sternum Length	Health status Plantar Lesions Sternal Lesions Neck score Breast score Wings score Beck score	Physical -chemical traits Drip loss (drumstick) b* colour (breast) Drip loss (breast) WHC (breast) b* colour (drumstick) White Striping (WS) a* colour (drumstick) L* (drumstick) a* colour (breast	Meat oxidative status Lipids (drumstick) MDA (breast) Retinol (breast) Retinol (drumstick) Tocols (drumstick) Tocols (breast) Total lipids (breast) Carbonyls (drumst.) Carbonyls (breast)	Meat fatty acids profile and indexes PUFA (breast) C18:2n-6, LA (breast) C18 (breast) C18 (breast) C18:1n-9 (breast) MUFA (breast) C20:2 (breast) n-3 (breast) C20:5n-3, EPA (breast) C22:2 (breast) C22:2 (breast) C22:4 (breast) C22:4 (breast) C20:4n-6, AA (breast) C14 (breast) C14 (breast) C16:1 (breast) C17:1 (breast) C14:1 (drumstick) C22:6n-3, DHA (breast) C14:1 (drumstick) C16:1 (drumstick) C16:1 (drumstick) C18 (drumstick) C20:5n-3, EPA (drumstick) C18 (drumstick) C22:2	Blood fatty acids profle PUFA blood SFA blood C18 blood C18 blood C18:2cis n-6, LA blood C16 blood C20:4n-6, AA blood C20:5n-3, EPA blood C18:3 n-3, α-ALA blood n-3 blood C18:1n-9 blood MUFA MDA blood	Blood traits HCT (%) Lysozyme ROMS PAO Heterophiles/lymphocy tes
	Simona N 75th FAA	Jattioli P Annyal Meeting, 1/5 Septem	her 2024 - Florence, Italy		n-3 (drumstick) PUFA (drumstick) C22:6n-3, DHA (drumstick) C18:1cis9 n-9 (drumstick) C22:4 (drumstick) C22:5n-3, DP (drumstick) C20:4n-6, AA (drumstick)		

STATISTICAL ANALYSIS OF DATA

6

STATISTICAL ANALYSIS OF DATA

1. DA: selection of the variables characterizing the genotype for each pillar

- ✓ stepwise method (F value = 0.02)
- ✓ To avoid multicollinearity, the variables were first selected using correlation and pooled within-groups correlation matrices by eliminating those with a coefficient ≥ |0.8|
- In the "behavior" pillar, variables with a mean occurrence < 1 were not included (i.e., rare behaviors).

- The DA produced the discriminant function -most parsimonious linear combinations of indicators describing between-genotype differences for each pillar-

 For each pillar, the variables to be included in subsequent analyzes were selected based on their contribution to discrimination (Dfs explaining at least 80% of the variance between genotypes).

The solution of the the solution of the soluti

Simona Mattioli

2. Principal Component and Reliability Analyses: creation of a composite Index and its validation and refinement

DA behaviour		DA _{body condition}		DA _{meat}	DA _{In vivo health}				
Variable	Df1 (98.8%)	Variable Df1 (84.0%)		Variable	Df1 (55.5%)	Df2 (27.8%)	Variable	Df1 (65.6%)	Df2 (28.1%)
Resting	5.699	Live weight	0.724	HFI2_breast	0.479	0.523	НСТ (%)	1.101	-0.981
Scratching	4.066	DFI	0.457	Carbonyls_drumstick	0.460	0.225	tocols	0.603	0.053
Roosting	0.698	Breast yield	0.303	DRIP loss %_drumstick	0.319	-0.493	Retinol	0.488	0.156
Grass peking	0.114	Back Score	0.203	Carbonyls_breast	0.299	0.246	H/L	-0.057	0.547
Attacking	-3.712	Plantar Score	0.044	MUFA_breast	0.295	0.237	Carbonyls	-0.124	0.526
Grooming	-4.450	Breast Score	-0.470	pH_breast	0.268	-0.261	Lisozima	-0.129	-0.447
				n-3_drumistick	0.167	0.384	HGB	-1.266	0.351
				SFA_drumistick	-0.045	-0.614			
				n-6_drumistick	-0.083	-0.703			
				SFA_breast	-0.237	0.434			
				DRIP loss%_breast	-0.257	0.043			
				Retinol_breast	-0.352	-0.415			
				lipids_breast	-0.594	0.578			

Simona Mattioli _____75th EAAP April Meeting, 1/5 September 2024 - Florence, Italy

PPIL

RESULTS

PPILOW

Simona Mattioli

STATISTICAL ANALYSIS OF DATA

3. Principal Component and Reliability Analyses: creation of a composite Index and its validation and refinement

<u>REFINE</u>

- > One variable was excluded because it did not present any correlation coefficient >0.3 (SFA_drumstick).
- Other variables were removed because had a loading <0.32 (HGB, Scratching, Attack, Tocols_blood, n-6 and n-3 drumstick, retinol_breast, tocols_blood, lysozyme)</p>

	Component
	1
Zscore (live weight)	.919
Zscore (DFI)	.876
Zscore (BREAST feather condition)	862
Zscore (lipids_breast)	.746
Zscore (breast yield)	.662
Zscore (DRIP loss %_drumstick)	655
Zscore (HFI2_breast)	535
Zscore (SFA_breast)	.521
Zscore (Confort)	499

Component Matrix

FINAL SELECTION:

- 9 variables were thus selected for the creation of the Index.
- The Cronbach's Alpha value for this composite index was 0.869.
- A final PCA was conducted including the nine variables listed in Table (PCA explained 38.6% of the variance)

Simona Mattiol

RESULTS

4. Index scores and differences among genotypes

PPILOW

CONCLUSIONS - Take home message

- ✤ A simple index for describing the chickens adaptability to ERS is needed
- The choice of the criteria for the index building is very important, more criteria produce more robust index. It is need
 - 1. Consistency: Pillars representability
 - 2. Reliability: number of variables to include
 - 3. Simplicity: few, simple and «cheap» variables to assess, with the aim to use them also in large-scale/on-farm application
- To reduce the criteria number is needed to refine the index by including more data (chicken genotypes) in the analysis

The tested genotypes are SG, therefore very similar in characteristics, consequently the variance explained by the criteria is limited. Probably applying the index to extreme lines would be more explanatory.

PPILOW PARTNERS

- Contraction

Thank you for your attention

simona.mattioli@unipg.it

www.ppilow.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 816172