

Merlot E^1 , Grivault D^2 , Comte R^1 , Moreau S^2 , Ferchaud S^2 , Canario L^3 Breeding for a better survival of piglets in organic farming: consequences on maternal cortisol and neonate metabolic status

The high neonatal mortality in organic pig farms (sometimes > 35%) is in conflict with the high welfare principles of organic farming.

Selective breeding strategy

Principle:

- Sows inseminated over successive generations with semen from boars with a high genetic merit for piglet survival
- Boars reared in conventional farms of 2 French selection companies
- Daughters from best dams, reared in organic conditions, chosen as future reproducers

Mothers

Reproduction data:

estation Length, d 1 alets born Alive 1	113.8ª	114 7b	0.2
alets horn Alive 1		117.7	0,3
giolo borni / (11/C)	15.3	15.3	0.7
llborns 1	1.08	0.91	0,23
ushed piglets 1	1.98	1.94	0,35
rvival rate D2 8	84.7	84.0	2,7
rvival rate D21 7	73.4	67.9	4,8
rvival rate D49 7	70.86	67.04	3
ter weight D0, kg 2	23.6	23.5	9,4
rvival rate D2 8 rvival rate D2 7 rvival rate D21 7 rvival rate D49 7 ter weight D0, kg 2	84.7 73.4 70.86 23.6	84.0 67.9 67.04 23.5	

Salivary cortisol, ng/mL:

D-7 D-7 D-2 D-2 D4 D4 D11 8 am 4 pm 8 am 4 pm 8 am 4 pm 8 am Sampling time, d / farrowing

Conclusion

Selective breeding for a better survival of piglets seems to have :

- > An effect on neonatal mortality too small to be detected on G2,
- Decreased dams' secretion of cortisol, an hormone fundamental to the control of energy metabolism and stress response,
- > Favoured a better metabolic maturity in piglets at birth.
- > These results are to be confirmed on the G3 generation.

Piglets

Plasma indicators of robustness and maturity at 1d of age:

Plasma variable	G1	G2	SD
IgG, g/L	23.3	24.6	2.8
Lactate, µmol/L*#	4029	4343	208
Glucose, mg/L*#	991	917	54
Albumine, g/L*	9.13ª	9.86 ^b	0.23
dROM, CARRU*	152ª	189 ^b	5
FRAP, molar Trolox eq./L	61.1ª	49.2 ^b	2.0

*Positively correlated with piglet weight at 24h

[#] Blocking sows induced lower lactate in G1 only (P<P.05), and lower glucose in males only (P<0.05).

Causes of piglet mortality (G1 data):

¹ PEGASE, INRAE, 35590, Saint -Gilles, France ² GENESI, INRAE, Venours, 86480 Rouillé, France ³ GenPhySE, INRAE, 31326 Castanet Tolosan, France Contact: elodie.merlot@inrae.fr

The project PPILOW has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°816172. Price