Update on the authorization of SG meat-type genotypes for conventional and alternative farming systems in the EU

Cesare Castellini

Department of Agricultural, Food and Environmental Sciences (DSA3) University of Perugia, Italy

SG (%) diffusion in some EU countries (data from different sources)

Consumers and ideal chicken farm Escobedo del Bosque et al. (2021) & other surveys

Ohusbandry system with space for the animals including free-ranging

Ocircular farming (from fodder production to slaughtering) with remuneration of farmers for their efforts

Otransparency about good animal conditions

Ogeographical proximity between place of production and consumption

Slow Growing (SG) poultry strains in EU

 Increasing attention of public opinion and regulatory agencies toward ethical issue (welfare) and qualitative traits of meat

 It is expected > use of SG and dual-purpose genotypes in both conventional & alternative systems

Assessment of SG use in EU

- Many of these National assessments consider only DWG (in g or in %) with no harmonization or rules (density), DWG thresholds (from 27 to 55 g/day) and minimal age (from 40 to 81d)
- Generally, SG definition is the same for conventional and organic production
- This render the EU market distorted

DWG required in organic production (source ERPA, 2024)

Reported effects of SG on the main endpoints (AVEC and other sources)

Reported effect of Dual pourpose chicken on the main endpoints (lohmann data)

Main criticism of SG assessment

- The use of SG implies changes in the whole system.
- A multidimensional approach would be needed
- Lack or common RULES and TOOLS

Promising approach

1. Animal based assessment – adaptability (behaviour, welfare, performance, quality)

2. **Complete assessment** (environmental and social impacts) "ONE WELFARE"

Multidimensional vs reductionist approach

2. Genotype x environment interaction (adaptability)

STEFANETTI et al. 2023 Poultry Science, https://doi.org/10.1016/j.psj.2023.103110.

Muscle functions (activity, lipid metabolism & oxidative status)

Activity index based on HUFA in red and white thigh muscles estimate *ex post* kinetic activity

Failla et al., 2021 – Poultry Science

Muscle composition (grass, n-3 & storage efficiency)

Grass intakes modified the ingestion of n-3 and n-6, tocols and carotenes

The chicken strains with higher grass intake also had lower storage efficiency

grass intakestorage ability

60

2. Adaptability

The multi trait index (≈ 100 variables)

PREREQUISITE

(walking activity, thermotolerance, disease resistance)

ADG and adaptability in SG

Daily weight gain of six poultry genotypes on the entire rearing cycle

Adaptability Index of six poultry genotypes

Genotypes

Genotypes

LCA revised One welfare & Multicriteria analysis

Conceptual framework of LCA and main gaps

Carbon cycle

Criticism of LCA in agriculture

 LCA focuses on negative impacts rather than positive
lack of indicators for key issues i) resource efficiency (recycling; renewable resources); ii) resilience of soil (C sink) and animal (health and welfare), biodiversity; iii) socio-cultural values

- 3. inconsistent modelling of indirect effects.
- 4. the choice of functional units (area, kg, kg of nutritive compounds)

One welfare & Multicriteria

..when you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind..

One Welfare assessment criteria and indicators

ANIMALS	ECONOMY	ENVIRONMENT	SOCIETY
O N Appropriate F behaviour	Performance- quantity	Enhance Biodiversity	Working conditions
W E Good L Environment	Performance- quality	Reduce Pollution	Job perception
A Good R feeding	Returns	Minimize External	Connection With territory
D Good I Health	Costs	Resources used	Social acceptance
E 39	19	15	18

Different stak<mark>eholders</mark>

MCDA can show the effect of different factors and different point of views on the whole system

. non absolute values . strenght and weakness

Multicriteria analysis

Case study

Different strains

Organic

Different outdoor enrichments

NE

Ε

Comparison of traits

■ CB ■ RJ ■ NN

FINAL RANKING (Genotype)

FINAL RANKING (enrichment)

Take home message

- Use of SG affects welfare, behaviour, performance, environment, meat quality
- Harmonization of criteria and tools in EU
- MCDA & OWA are suitable approaches, which requires further fine-tuning of criteria

UNIPG - poultry and MCDA unit

Cesare Castellini

Alessandro Dal Bosco

Simona Mattioli

Lucia Rocchi

Alice Cartoni Mancinelli

Luigia Bosa

Francesca Di federico

Elisa Angelucci