

Alternatives to the elimination of male chicks Profitability of dual-purpose chickens in organic production

Petra Thobe · Craig Chibanda
Helen Pluschke · Lisa Baldinger

Background

Research Question

Ban on the elimination of day-old male chicks from laying hen breeding since January 1, 2022

Growth differences, from left to right: brother cockerels from different genotypes, right: broiler

"The practice of killing chicks for purely economic reasons is not compatible with the Animal Welfare Act (TierSchG) as we understand it today..."

Deutsches Tierärzteblatt, 2022, 70 (08)

- One solution: sex determination in the egg
- Concerns in organic farming: major organic associations in Germany (Bioland, Naturland, Demeter) have spoken out against sex determination
- Development of dual-purpose genotypes that are sustainable and economical in organic production
- This aspect is being investigated in the EU-research project PPILOW (2019-2024)

Research Question: Which dual-purpose genotypes / uses the least resources while producing the highest output to be economically viable?

Initial findings "on-station" at the experimental farm at Thuenen Institute for fattening the brother cockerels

Identified performance parameters

	Genotype A	Genotype B	Genotype C	Genotype JA757	
Feed conversion ratio (FCR)	3.38	3.66	3.33	2.74	
Daily weight gain (g/day)	26	21	19	45	
Ø Feeding period (days)	83	83	83	85	
Total feed consumed per bird (g)	7536	6332	5335	10373	
Final live weight (g/bird)	2203	1763	1634	3831	
Mortality at farm level (%)	1.1	1.1	2.1	3.3	

© Thünen-Institut, Helen Pluschke

 \mathcal{J} and \mathcal{Q} birds, Genotype A, meat-type

- A, B and C: high feed conversion ratio
- C: lowest daily weight gain
- A and B: lowest mortality rate
- Broiler JA 757 highest feed efficiency
- A B C JA757

Figure 1. Comparison of full costs (€ per 100 kg live weight)

- A: lowest production costs among dual-purpose genotypes
- Full cost differences: A versus JA757: 70 €/100 kg live weight C versus JA757: 107 €/100 kg live weight

 \Im and \Im birds, Genotype C, emphasis on laying eggs

Conclusions from the PPILOW on-station trials in Germany

- The higher the egg production in the dualpurpose genotype, the lower the feed conversion and the higher the production costs of the males
- The higher production costs of the dualpurpose males can only be covered if higher product prices are achieved or if the males are "cross-subsidized" by a price premium for eggs.

Prospective analysis

- EU-Project PPILOW (Poultry and Pig Low-input and Organic production systems' Welfare):
 → Performance and economic efficiency of ♂ and ♀ birds as joint unit
- Links to Project "aWish": Animal welfare indicators at the slaughterhouse (2023-2026)

Control group broiler JA757

programme under grant agreement No 816172